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Abstract
Numerical computations (Valentini and Westman 2005 Proc. R. Soc. A 461
253–72) demonstrate that an initially arbitrary particle density, stirred by the
field of de Broglie velocity associated with the Schrödinger wavefunction for
a sum of energy eigenstates, relaxes to the quantum thermal equilibrium that
is the Born probability density, provided the particle density is coarse grained.
The results are explained here by a Lagrangian or trajectory analysis, in terms
of the relative dispersion of passive particles in a turbulent fluid. The analysis
assumes that the turbulence statistics are stationary and isotropic, although
these assumptions may be weakened. The relaxation to equilibrium is not
reversible, owing to the coarse graining of the particle density and to the
statistical inevitability of particle separation. There is no effective stirring
toward equilibrium in very simple quantum systems such as a Gaussian wave
packet or an energy eigenstate. However, it is argued that relaxation takes
place during the emission of the packet or the establishment of the eigenstate,
owing to stirring by the transients in the wavefunction for the entire system.
The Lagrangian analysis is readily extended to nonrelativistic many-particle
systems and to relativistic single-particle systems.

PACS numbers: 03.65.Ca, 03.65.Ta, 02.70.Ns

1. Introduction

1.1. Preamble

The purpose of this investigation is the elimination of a fundamental assumption in de Broglie–
Bohm mechanics. The assumption is instead derived from the other fundamental assumptions,
using analytical methods borrowed from classical fluid dynamics. The detailed derivation is
presented for the simplest case of a single-particle, nonrelativistic quantum system in a state
that is a sum of energy eigenstates. The derivation is outlined for more complicated systems.
The assumption at issue asserts that the spatial distribution of the position of a particle,
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the position being uncertain solely due to a lack of empirical knowledge, is the same as the
Born probability distribution of orthodox quantum mechanics. The assumption is eliminated
by proving that the coarse-grained particle density relaxes in time to the Born density, that
is, the latter is the ‘quantum thermal equilibrium’ for the former. There are other arguments
for density relaxation, which either introduce a level of motion below that associated with
the quantum system [1] or which ignore coarse graining but instead introduce a concept
of ‘typicality’ along with the notion of the wavefunction of the universe [2, 3]. The latter
argument assumes that the initial configuration of the universe is random and distributed
according to the initial Born density of the universe. The proof of relaxation given here has
no such requirements. Quantum mechanics is well known, yet it is necessary to review some
of its bare essentials in order to describe de Broglie–Bohm mechanics, and hence the plan of
this paper.

1.2. de Broglie–Bohm mechanics

de Broglie–Bohm mechanics is a theory for the motion of subatomic particles [4–6]. Like
orthodox quantum mechanics, to which it is a putative alternative, de Broglie–Bohm mechanics
or ‘dBB’ expresses quantitative information about a particle in terms of a ‘wavefunction’ ψ ,
which is a field over position x in three-dimensional space R

3 and which is a continuous
function of time t. The wavefunction ψ is the solution of a ‘wave equation’ subject to initial
and boundary values. In the simplest case, the nonrelativistic wave equation for a single
particle of mass m and spin-0 is the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ, (1)

where ψ = ψ[x, t] takes complex values in C, V = V [x] is an externally imposed and
real-valued potential field, while h̄ is the reduced Planck’s constant (see, e.g., [7]). The
Laplacian operator ∇2 is ∇ · ∇ where the gradient operator ∇ is, in component form, ∂/∂xi ,
the components of x being xi for i = 1, 2, 3. According to orthodox quantum mechanics
(‘QM’), the particle has no definite quantitative attributes in general. Rather, measurements
of the particle yield at random the eigenvalues of a Hermitian operator acting upon ψ , there is
a particular operator for each kind of measurement. The random values take their probability
distribution function from the Born density |ψ |2. For example, the particle has no definite
position. The QM expectation value of a position measurement is

〈x〉[t] =
∫

D

ψ∗[x, t]xψ[x, t] d3x, (2)

where D is the spatial domain of ψ . The wavefunction is normalized so that
∫
D

|ψ |2d3x = 1.
The particle has no definite momentum either, and the QM expectation value of a momentum
measurement is, by invoking the de Broglie relationship p = −ih̄∇ between momentum and
wave number,

〈p〉[t] = −ih̄
∫

D

ψ∗[x, t]∇ψ[x, t] d3x. (3)

That 〈p〉 has real values is a consequence of Green’s theorem and the boundary values for ψ .
The justification for adopting |ψ |2 as a probability density is that solutions of (1) obey the
Born identity

∂|ψ |2
∂t

+ ∇ · j = 0, (4)

where the ‘probability current’ j = j[x, t] is defined by

j = (h̄/m)Im(ψ∗∇ψ). (5)
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It is evident from (4) that
∫
D

|ψ |2d3x is constant in time, provided ψ∗∇ψ is real on the
boundary. This condition is satisfied by a variety of natural choices of boundary conditions
for (1). The normalization is also constant if ψ is periodic in space [8].

According to dBB, on the other hand, the particle has some definite position x at any time
t. It also has a definite momentum mv, where the de Broglie velocity v is defined by the ratio
of the probability current and probability density:

v[x, t] ≡ j[x, t]/|ψ[x, t]|2. (6)

Expressing the wavefunction in the polar form ψ = |ψ | exp(iS/h̄), where the unit of phase S
is the reduced quantum of action h̄, it follows readily that the momentum of the particle is the
gradient of the phase:

mv = ∇S. (7)

Consider, for example, the spherical wavefunction for a free α-particle [9]:

ψ[x, t] = |x|−1 exp(ik|x| − iωt), (8)

with k being a constant and ω = h̄k2/2m. The de Broglie velocity is

v[x, t] = (h̄k/m)
x
|x| , (9)

that is, the α-particle moves steadily along some ray through the origin.
The current j and hence the de Broglie velocity v may be defined for an arbitrary Hermitian

Hamiltonian [10]. Quantum spin adds a rotational part to the de Broglie velocity [11–13].
If a particle has position a at time s, then its position x at another time t is given in general

by the path function x = P(a, s; t), where P satisfies the ordinary differential equation

dP
dt

(a, s; t) = v[P(a, s; t), t] (10)

subject to the general initial condition

P(a, s; s) = a. (11)

The α-particle with de Broglie velocity (9) has the path x = at/s, provided |a|/s = h̄k/m.
It being a practical impossibility to measure the position of a particle perfectly, there is

imprecision in a and subsequently in x. This imprecision is expressed as a particle density
ρ = ρ[x, t], or relative frequency of finding the particle near x at time t. On the assumption that
particles are neither created nor destroyed, the density evolves according to the conservation
law

∂ρ

∂t
+ ∇ · (vρ) = 0. (12)

It is convenient to normalize the particle density so that
∫
D

ρ d3x = 1. Thus, the dBB
expectation value of position at time t is

〈x〉ρ[t] =
∫

D

xρ[x, t] d3x, (13)

while the dBB momentum expectation is

〈mv〉ρ[t] = m

∫
D

v[x, t]ρ[x, t] d3x. (14)

The de Broglie velocity field v being defined by (6), the identity (4) may be written in the
form

∂|ψ |2
∂t

+ ∇ · (v|ψ |2) = 0. (15)
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The solutions of (12) and (15) are identical everywhere at any time t, if and only if they are
identical at one time s. If ρ and |ψ |2 are the same at some time, then the expectation values
predicted by dBB and by QM, respectively, for that time are also the same. This is trivially
obvious for the position (compare (2) with (13)) and is readily seen to be the case also for
momentum (compare (3) with (14)). Consider again the example [9] of the free α-particle
with de Broglie velocity (9). It is clear that, even though the Born density |ψ |2 cannot be
normalized, the assumed equality of shapes of |ψ |2 and ρ ensures that the most probable initial
position of the particle is close to the origin. For a complete discussion of expectation values,
and also the dBB account of the Heisenberg uncertainty principle, see [11, 14].

The requirement that ρ and |ψ |2 be initially and therefore subsequently identical is perhaps
more than anything else responsible for the lack of widespread preference for dBB over QM,
even though dBB does not lead to the ‘measurement problem’ of QM, and even though the
mystery found in QM over ‘delayed choice’ experiments does not arise in dBB [1, 5, 6, 11]1.
The vexatious assumption of initial agreement between ρ and |ψ |2 may be discarded, if it
can be proven that ρ ∼ |ψ |2 after a few oscillations of the quantum system, that is, if |ψ |2
is the quantum thermal equilibrium (QTE) for the system. The demonstration by Valentini
and Westman [8] of the relaxation of the ‘coarse-grained’ particle density to QTE is a major
development for dBB theory. Valentini [15] has proposed that photons emitted in the early
universe may not yet be in QTE. Again, relaxation to QTE can only be attributed to the stirring
of the particle density by the field of de Broglie velocity. The dBB continuum field theory in
which this effect is to be established strikingly resembles the classical theory of a compressible
fluid [16, 17].

1.3. Fluid dynamics

There are advantages to the ‘Lagrangian’ picture of fluid kinematics over the ‘Eulerian’ picture,
and these advantages are used here to establish relaxation. It must first be understood that it
is meaningless to speak of the density defined at a single point. Rather, the density is the total
number of particles in a small but finite volume containing the point. Thus, relaxation must owe
to the history of a small volume element, rather than that of a single point. In fluid-mechanical
terminology, relaxation owes to relative dispersion and not to absolute dispersion2. The
general principles of relative dispersion are well understood, and it suffices here to consider
only the stretching of an infinitesimal line element. The analysis is foreshadowed by Bohm
and Hiley [1]. The phase complexity of many quantum states and the numerical evidence that
dBB particle paths become chaotic support the use of formal statistical arguments concerning
relative dispersion in dBB. The statistics are taken from the small cell that defines the locally
averaged or coarse-grained density, and also from the entire domain.

The dBB velocity field for a sum of energy eigenstates is regarded here as a random process
that is statistically stationary in time and statistically isotropic in space. The condition of
statistical isotropy implies statistical homogeneity in space. These assumptions are reasonable
when the quantum state is an incoherent or random sum of many energy eigenstates, and the
domain is of simple shape. It is assumed that the time series of Lagrangian velocities and

1 The lectures of Feynman et al [7] on quantum mechanics open with what is often cited as the definitive statement
of orthodox quantum mechanics, in the context of the Young double-slit experiment. The epilogue to the lectures, on
the other hand, is a painstaking development of de Broglie–Bohm mechanics as a description of electron flow in a
superconductor.
2 The latter is of interest in the study of turbulent mixing, in which there is understood to be an ensemble of velocity
fields. Hence a particle released at a single point will have an ensemble of subsequent positions. The flow ensemble
may be real or may be the ideal representation of flows in a sequence of disjoint time intervals, throughout all of
which the sample statistics are stationary. There is only one velocity field here, the single field of de Broglie velocity.
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those of their spatial gradients, or in other words the histories of velocities and gradients
following the motion, decorrelate in time. It is also assumed that the lagged autocorrelation
functions are integrable over the lags. The last-mentioned assumption ensures the realizability
of the random Lagrangian processes. The assumption of stationarity simplifies the evaluation
of the variance of a time integral following the motion and may be weakened. Provided
the classical Lindeberg condition holds, the integral is asymptotically normal for large time
magnitude and the separation of particle pairs is log-normal. The assumption of isotropy
may be weakened to homogeneity, so long as the relative-diffusivity tensor remains positive-
definite. A further inference of ‘whiteness’ is made for the spatial field of initial ‘defect’
or initial relative departure from QTE, in the following sense. It is shown below that defect
necessarily has a vanishing spatial average at all times and is conserved following the motion.
It is also shown below that particles separation variance increases as time increases in either
sense. Thus particles in the same coarse-graining cell at some late time can be expected, at
the initial time, to be randomly and widely scattered into the several subdomains in which the
defect takes one sign or the other with equal measure. The initial defect values sampled by the
particles are accordingly uncorrelated from particle to particle. It immediately follows that
the coarse-grained defect at the later time not only has identically vanishing expectation but
also has asymptotically small variance. That is, QTE obtains asymptotically.

In the terminology of quantum mechanics, the state is nonstationary since its wavefunction
is a linear combination of time-dependent and mutually interfering energy eigenstates. The
terminology of time series is to be understood subsequently. The quantum statistics of the
state are pure since it is represented by a single wavefunction. If the quantum statistics were
mixed, meaning that the quantum system is represented by several wavefunctions each of
which has some relative frequency, then the analogy with turbulence would be even stronger.
For a further discussion of dBB quantum statistics, see [1] and [11]. Returning to the pure state
considered here, the assumptions of isotropic and stationary turbulence in the dBB velocity
field make the finding of irreversible relaxation to QTE all the more striking.

The plan of the rest of this paper is as follows. The formalities of particle kinematics are
outlined in section 2. The rapid growth of fine structure in particle paths and the attendant
need for local spatial averaging or coarse graining are established in section 3. The main
result, namely the relaxation of coarse-grained particle densities to QTE, is also derived in the
outline in section 3. The sampling statistics that quantify relaxation are developed in detail in
section 4 and are followed in section 5 by a number of remarks on the various assumptions
made in this analysis. The irreversibility of relaxation is described in section 6, together
with a brief discussion of the paradox presented by the Poincaré recurrence theorem. Several
simple counterexamples, in which relaxation does not occur, are described in section 7 but
they are shown to be incomplete in the sense that they do not take into account the processes
by which the simple quantum systems are established. It is however explained, in terms
of spectral coherence, why relaxation may fail to occur in these counterexamples. There
are straightforward extensions of the proof of relaxation for multi-particle systems and for
relativistic systems, and the extensions are discussed in outline in section 8.

2. Particle kinematics

2.1. Differential equations

Consider again a particle located at the position a at time s. Denote the position x of the particle
at another time t by the path function x = P(a, s; t) ∈ R

3. In particular, P(a, s; s) = a. The
parameters a and s serve to ‘label’ the path passing through the point a at time s. The Eulerian
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field v = v[x, t] of the de Broglie velocity (6) determines particle paths x = P(a, s; t) via the
Lagrangian prescription (10) subject to the general initial condition (11). In the interest of
clarity, Eulerian arguments are denoted as [x, t] and Lagrangian arguments as (a, s; t). Note
that both t > s and t < s are allowed. For each well-behaved field of velocity v, the path P is
indeed a function of its arguments. In particular, the particle position x at time t is unique [18],
given that it is at a at time s. Interchanging symbols, a = P(x, t; s) and P(x, t; t) = x. The path
P is, in this sense, its own inverse: P(P(a, s; t), t; s) = a. To exchange the Lagrangian and
Eulerian ‘pictures’, note that for any function F, it is the case that F(a, s; t) = F [P(a, s; t), t]
and F [x, t] = F(P(x, t; s), s; t). It is readily established (see, e.g., [19]) that the second of
these identities is independent of the labeling time s. It would be more consistent to denote
the time derivative in (10) by a partial derivative, as in [19], but convention is followed here.
The time derivative in (10) is said to ‘follow the motion’ of the particle. The Jacobian of the
transformation a → P(a, s; t) is denoted by J = J (a, s; t), where

J = ∂(P1, P2, P3)

∂(a1, a2, a3)
. (16)

If x = P(a, s; t), then J (a, s; t)J (x, t; s) = J (a, s; s) = 1. It is a kinematic identity (see,
e.g., [20]) that

dJ

dt
(a, s; t) = J (a, s; t)∇ · v[P(a, s; t), t], (17)

where ∇ · v[x, t] = (∂vi/∂xi)[x, t] is the flow divergence.
The Lagrangian and Eulerian expressions, for the rate of change of a field F following the

motion, are related by

dF

dt
(a, s; t) = ∂F

∂t
[x, t] + v[x, t] · ∇F [x, t], (18)

where x = P(a, s; t).
According to the dBB theory, the particle density ρ = ρ[x, t] obeys the Eulerian

conservation law (12). The law may be rearranged as

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (19)

which by virtue of (17)–(19) has [20] the Lagrangian form

d(ρJ )

dt
(a, s; t) = 0, (20)

where a = P(x, t; s). In the same way, (15) has the Lagrangian form

d(|ψ |2J )

dt
(a, s; t) = 0. (21)

2.2. First integrals

The solution of (21) may be expressed as

|ψ |2[x, t]J (a, s; t) = |ψ |2[a, s], (22)

where a = P(x, t; s). Combining (22) with the corresponding first integral of (20) yields

f [x, t] ≡ ρ[x, t]

|ψ |2[x, t]
= ρ[a, s]

|ψ |2[a, s]
= f [a, s], (23)

that is, the density ratio f ≡ ρ/|ψ |2 is conserved following the motion. It will be convenient
to define the ‘defect’ g[x, t] ≡ f [x, t] − 1; thus g[x, t] = g[a, s] where, again, a = P(x, t; s).

6
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2.3. Conserved expectations

The conservation of |ψ |2J on particle paths implies that the QM measure is also conserved,
in the sense that

|ψ |2[x, t] d3x = |ψ |2[a, s] d3a, (24)

when a = P(x, t; s). Specializing to s = 0, it is immediately the case that for any field which
is conserved on particle paths, such as the density ratio f , and for any function F(f ),

F(f [x, t])|ψ |2[x, t] d3x = F(f0[a])|ψ0|2[a] d3a, (25)

where f0[a] = f [a, 0] and ψ0[a] = ψ[a, 0]. Hence, the QM expectation ofF(f ) is conserved:

〈F(f )〉 = 〈F(f0)〉. (26)

For example, taking F(f ) ≡ f − 1 = g and F(f ) ≡ (f − 1)2 = g2, respectively,

〈g〉 = 〈g0〉 =
∫

D

(ρ0[a] − |ψ0|2[a]) d3a = 0, (27)

and

〈g2〉 = 〈
g2

0

〉 =
∫

D

(ρ0[a] − |ψ0|2[a])2

|ψ0|2[a]
d3a, (28)

where g0[a] = g[a, 0], ρ0[a] = ρ[a, 0]. There is an integrable singularity in (28) if ψ0 has a
first-order node or simple zero.

The vanishing QM expectation for g0, as expressed in (27), implies that the initial defect
g0[a] takes both positive and negative values in the domain D. The variance of these values is
finite, as expressed in (28). It will be shown in section 4 that at any time t, a coarse graining
or local averaging of the field of defect g[x, t] is a sample mean of a large number of unbiased
samples of the initial defect field g0[a]. The lack of bias owes to the relative dispersion of the
sampling points in the coarse-graining cell, backward in time, and to the particle paths being
independent of the initial defect. It will also be shown that the sample mean has vanishing QM
expectation, and small QM variance of O(N−3) for N3 samples. The vanishing expectation
and small variance of g, after coarse graining, are equivalent to relaxation of the dBB density
ρ to the Born density |ψ |2, since the latter density is not significantly affected by the coarse
graining.

3. Coarse graining and relaxation

3.1. Fine structure in ρ

The numerical computations of Valentini and Westman [8] yield evolved fields of particle
density ρ for t > s, having a very fine structure not present at t = s. Further such computations
are reported in [21]. In all those computations s = 0, but it is necessary here to retain briefly
a variable s. The ‘fine grain’ found in the computations is a consequence of the relative
dispersion of initially neighboring particles, as will now be shown. Rearranging (23),

ρ[x, t] = |ψ |2[x, t]f [a, s], (29)

where a = P(x, t; s). The wave equation (1) is linear, so in the presence of a constant potential
V, the wavefunction ψ is exactly as smooth spatially at time t > s as it is at time t = s, while
ψ remains about that smooth when in the presence of a smooth potential. The initial ratio
f [a, s] is smooth in a if the initial particle density ρ[a, s] and initial Born density |ψ |2[a, s]
are smooth, except at nodes of ψ . However, for large values of elapsed time t, the initial

7
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value a = P(x, t; s) of the path function may be very sensitive to the labeling position x.
Differentiating (29) with respect to xi yields

∂ρ

∂xi

[x, t] = ∂|ψ |2
∂xi

[x, t]f [a, s] + |ψ |2[x, t]
∂f

∂ap

[a, s]
∂Pp

∂xi

(x, t, s), (30)

where again a = P(x, t; s). Changing the symbols (a, s; t) in (10) to (x, t; s), and
differentiating with respect to the label xi yields

d

ds

∂Pp

∂xi

(x, t; s) = ∂vp

∂xq

[P(x, t; s), s]
∂Pq

∂xi

(x, t; s), (31)

subject to (∂Pp/∂xi)(x, t; t) = δpi . In local coordinates rotating at the rate ωp/2, where
ωp ≡ εpqr∂vr/∂xq is a component of the vorticity in the de Broglie velocity field, (31)
becomes (without introducing a new symbol for the rotating coordinates, and suppressing the
arguments for clarity)

d

ds

∂Pp

∂xi

= epq

∂Pq

∂xi

, (32)

where epq is the symmetric part of the rate-of-strain tensor ∂vp/∂xq . Note that the de Broglie
velocity field is rotational in the presence of quantum spin, in which case ∂vp/∂xq is not
symmetric. The eigenvalues of epq are all real, and their sum is the divergence ∇ · v of the de
Broglie velocity field. The Eulerian integral of the divergence, over the rigidly or periodically
bounded domain D, vanishes at all times:∫

D

∇ · v[x, t] d3x = 0; (33)

thus, regions having positive values for ∇ · v (divergences) and regions having negative
values (convergences) occur simultaneously. We are concerned with integrating (32) from
s = t > 0 back to s = 0. We are therefore especially interested in convergences, which yield
larger gradients for conserved quantities since epq has at least one negative eigenvalue at a
convergence (points that are close at the present time are further apart in the past). The rapid
temporal and spatial variability of the phase S in regions of interference yield equally rapid
sign changes for its Laplacian ∇2S and hence for ∇ · v. Thus, particles most likely travel
through many convergences and divergence during long ‘flights’.

3.2. Infinitesimal line stretching

It will be shown below that moments of path gradients over the domain D have the same
asymptotic behavior for forward integration as for backward, so the coordinates (x, t; s) for
the backward problem in (31) and in (32) may as well be replaced with the coordinates (a, s; t)

for the more familiar forward problem. It is appropriate to specialize henceforth to s = 0.
After diagonalization, (32) becomes (suspending the summation convention)

d

dt
	p(t) = λp(t)	p(t), (34)

with 	p(0) = 1, where λp is the time series of one of the three eigenvalues of epq on a path and
	p is the amplitude of the associated eigenvector. The skew part of the rate-of-strain tensor
∂vp/∂xq being suppressed, the model (34) captures the change in the magnitude of the partial
derivatives of the path position but not their rotation. The labels a and 0 are suppressed for
clarity. It will be also be helpful to suppress the subscript p momentarily.

The degrees of freedom in λ may be counted as follows [22]. The moments of λ over D
are assumed to be stationary with respect to time, and time reflection invariant. Almost no

8
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trajectories detach from the boundary, the latter being either rigid or periodic, and almost no
trajectories divide [18], so uniformly weighted Eulerian moments over D are also Lagrangian
moments over D weighted with the Jacobian. The first moment of any field F over D (a cube
of side L) is denoted as

F [x, t] ≡ L−3
∫

D

F [x, t] d3x = L−3
∫

D

F(a, 0; t)J (a, 0; t) d3a = F(a, 0; t), (35)

where a = P(x, t; 0).
Denote first and second moments of the eigenvalues of epq by μ ≡ λ(t) and σ 2

λ ≡
(λ(t) − μ)2. The Lagrangian statistics of velocity and all derived fields having been assumed
stationary, all single-time moments such as μ and σ 2

λ are constant; therefore,∫ t

0
λ(r) dr = μt (36)

and (∫ t

0
λ(r) dr

)2

= μ2t2 + 2σ 2
λ

∫ |t |

0
(|t | − r)Cλ(r) dr, (37)

where Cλ(|t |) is the autocorrelation coefficient for λ(t). In particular Cλ(0) = 1. Note
that (36) and (37) allow for t < 0. It is assumed in (37) that Cλ(|t |) → 0 sufficiently
rapidly as |t | → ∞, being the essential realizability condition for a stationary random
process [23]. Hence the necessarily positive integral on the right-hand side of (37) has
the asymptote Tλ|t |, where Tλ = ∫ ∞

0 Cλ(t)dt > 0 is the ‘Lagrangian integral time scale’ for
the decorrelation of λ following the motion. The number of degrees of freedom in λ in the
interval between 0 and t is estimated to be |t |/Tλ. Assuming that this number is sufficiently
large, the integral I = ∫ t

0 λ(r)dr is, as a consequence of the central limit theorem (see, e.g.,

[24, 25]), asymptotically normally distributed with moments I = μt and (I − I )2 ∼ 2σ 2
λ Tλ|t |.

The absolute asymptotic departure from the normal distribution is uniformly bounded by√
Tλ/t . Hence the generic solution 	 = exp(I ) for (34) is lognormal, with the first

moment

	(t) = exp
(
μt + σ 2

λ Tλ|t |
)
. (38)

If μt < 0, the asymptotic behavior of 	(t) for large |t | would seem not to be determined by (38)
without a knowledge of σ 2

λ Tλ

/|μ|. Indeed, denoting the three eigenvalues of the symmetrized
rate-of-strain tensor epq once more by λp = λp(t), their sum is λ1 + λ2 + λ3 = ∇ · v which,
again, may be positive or negative. However, since the domain is rigid or periodic, the
mean divergence ∇ · v vanishes and hence the sum of the mean eigenvalues also vanishes:
μ1 + μ2 + μ3 = 0. It is therefore assured that two of the three μp have opposite signs. Thus
for at least one value of p, 	p(t) grows exponentially as t → ∞ as do all higher moments of
this 	p(t), while there is for at least one other p exponential growth in 	p(t) and all higher

moments as t → −∞. It is concluded that the mean magnitude
( ∑

p 	2
p

)1/2
, for the solution

of the model (34) of the evolution of path gradients (31), grows exponentially both backward
in time and forward in time. The fine grain that develops in the particle density ρ owes to this
infinitesimal line stretching: dxj → dPi , or exponentially growing separation of neighboring
points, as time runs backward or forward. It is therefore evident from (30) that the spatial fine
grain in the density ratio f [x, t] is inevitable if the initial ratio f [a, s] is not uniform with
respect to a, no matter how smooth the initial nonuniformity. Numerical computations of dBB
paths typically develop chaotic behavior [8, 17, 26–28].
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The Born probability current law (15) may be expressed in the Lagrangian form (21),
but an initially smooth Born density |ψ |2 remains smooth. It is being assumed that the
wavefunction ψ at the initial time t = s is a finite sum of the smooth eigenfunctions of the
Hamiltonian in (1). Then ∇ · j = (i/h̄)(ψ∗∇2ψ −ψ∇2ψ∗) is a finite sum of products of these
eigenfunctions, and by (4) so also is |ψ |2 at time s + dt . The particle density ρ, on the other
hand, has the initial flux divergence ∇ · (ρv) = ∇ · (f j) which is in general an infinite sum
of products of eigenfunctions, as is ρ at time s + dt .

The preceding analysis of infinitesimal line stretching explicitly assumes that the gradient
of the phase S and hence the de Broglie velocity v are highly variable both in space and time, as
is the case when ψ is a sum of many energy eigenfucntions. The assumption of time reflection
invariance for the autocorrelation functions of the eigenvalues λp(t) is solely for simplicity in
the evaluation of the squared integral in (37) and has no significant influence on the general
finding of expected exponential growth for path gradients as time increases or decreases. That
finding depends critically upon the vanishing of the divergence ∇ · v, averaged with weight J
over all the paths in the domain. In other words, the sample set of paths implicit in the model
(34) is not biased toward regions of convergence or divergence:

∫ ∇·vJd3a = ∫ ∇·vd3x = 0.
The stretching of an infinitesimal line element dxi is unbounded, but that of a finite

separation is bounded by the diameter of the domain D. The initially exponential growth of a
finite separation must eventually saturate.

It remains to estimate the order of magnitude of the symmetrized rate-of-strain tensor
epq, and the various time scales. Consider a Schrödinger wavefunction in the form of a
sum of simple waves, propagating in one space dimension for simplicity. For example let
ψ = A exp(−i(ωt + kx)) + B exp(−i(ωt − kx)), where A and B are unequal real constants,
while ω and k are a real frequency and a real wave number, respectively. The gradient ∂v/∂x

of the de Broglie velocity scales as h̄k2/m ∝ ω. The e-folding time of the path gradient
∂P/∂x therefore scales as m/h̄k2 ∝ 1/ω. The decorrelation time Tλ = Tλ(h̄,m, k) must also
have the scale m/h̄k2. In general, the stretching rate is estimated to be � = E/h̄, where E
is the expectation value of the energy for the state, and the stretching factor (38) is estimated
to be exp(�|t |). As demonstrated by Valentini and Westman [8], the fine grain in ρ appears
within a few oscillations of the system.

3.3. Coarse graining

The fine grain in the evolving particle density ρ[x, t] may be suppressed by spatial smoothing
or ‘coarse graining’:

{ρ[x, t]} = l−3
∫

cell
ρ[y, t] d3y, (39)

where the region of integration is a small cubical cell centered on x. The infinitesimal volume
element d3y is dy1 dy2 dy3, and l is the length of the sides of the cubical cell. Such coarse
graining is, again, always appropriate as the concept of a density defined precisely at a point
is misleading. The density near a point is meaningful, being the mass per unit volume within
a surrounding cell of vanishingly small but nonzero volume. In terms of the density ratio f ,
the coarse-grained particle density becomes

{ρ[x, t]} = {|ψ |2[x, t]f [x, t]} � |ψ |2[x, t]{f [x, t]} (40)

since, for very small cells, coarse graining has negligible impact on the very smooth Born
density |ψ |2. Again, coarse graining serves to suppress the chaotic behavior which is present
in ρ but not present in |ψ |2. The objective here is a proof that {f [x, t]} ∼ 1 as t → ∞, or
equivalently {g[x, t]} ∼ 0 as t → ∞, where again g is the defect f − 1.

10
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The first step toward a proof is the trivial result (27) that the QM expectation of the defect
g vanishes identically at any time t:

〈g〉 ≡
∫

D

g[x, t]|ψ |2[x, t] d3x = 0, (41)

since both ρ and |ψ |2 are normalized. This holds true in particular at time t = 0. Thus g takes
values in D having both signs, equally with weight |ψ |2. Consider next the coarse-grained
defect. Substituting for d3x using (24) yields

{g[x, t]} ≡ l−3
∫

cell
g[y, t] d3y � l−3|ψ |−2[x, t]

∫
C
g0[b]|ψ0|2[b] d3b, (42)

since |ψ |2 is smooth, that is, |ψ |2[y, t] � |ψ |2[x, t] for all y in a cell with centroid x. The
region for the integration with respect to b is the image C of the cell under the mapping
b = P(y, t; 0). If the cell image C were extended to the entire domain D, the second integral
in (42) would be 〈g0〉 which vanishes identically. Owing to line stretching as t → ∞, the
cell image does elongate indefinitely and tends to fill D. That is, {g} ∼ 0 for large t, and so
{ρ} ∼ |ψ |2: the coarse-grained particle density relaxes to QTE. A statistical estimate of the
proximity to QTE is derived in the next section.

4. Relaxation variance

4.1. Sample statistics

It remains to establish the vanishing of 〈{g}〉, which is the QM expectation of the coarse-grained
defect {g}, and also to estimate 〈{g}2〉 − 〈{g}〉2 which is the QM variance of {g}. It is now
necessary to specify a numerical implementation of the filter {· · ·}. Each coarse-graining cell is
a cube of side l  L, fixed in space, with its centroid at a point x in a regular three-dimensional
lattice spanning D. There are therefore (L/l)3 cells, for integer values of L/l � 1. The cells
are in turn partitioned into fixed cubic subcells of side l/N for some integer N � 1. The
number N3 of subcells in a cell must significantly exceed the number of chaotic disturbances
in the cell, if the disturbances are to be adequately resolved and suppressed by the coarse
graining. The subcells are identified by n, an ordered triple of integers. The centroid of the
nth subcell is at yn[x] = x + Yn, where Yn is independent of x. Thus in each cell, the nth
subcell occupies the same position relative to the cell centroid. The cell average {ρ[x, t]} is
approximated by the arithmetic mean

{ρ[x, t]} = N−3
∑

n

ρ[yn, t], (43)

with the expectation that the chaotic fluctuations of ρ within a cell cancel when summed with
equal weight. The cell average (43) is no longer a moving average defined for every point
x, but is now only defined for centroids x on a lattice. The cell average should therefore be
denoted as {ρ}[x, t], etc, but the notation for the moving average will be retained. Valentini
and Westman [8] use arithmetic means in partially overlapping cells, yielding smoother plots
of {ρ[x, t]}.

A weighted sum over all cells in a coarse-grained field approximates the QM expectation
for the fine-grained field. For example,

〈ρ〉 ≈ l3
∑

x

{ρ[x], t]}|ψ |2[x, t] = l3N−3
∑

x

∑
n

ρ[yn[x], t]|ψ |2[x, t], (44)

11
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which may also be expressed as 〈{ρ[x, t]}〉. Consider density defect which, being conserved
on particle paths, satisfies

{g[x, t]} = N−3
∑

n

g[yn, t] = N−3
∑

n

g0[bn], (45)

where bn = P(yn[x], t; 0). That is, the uniformly weighted average (45) filters the chaotic
fluctuations in the values of the initial defect sampled by the particle paths. By virtue of (27),
and (44) applied to the fine-grained defect g, the QM expectation of the coarse-grained defect
is found to vanish at time t and also initially:

〈{g}〉 = 〈{g0}〉 = 0. (46)

The QM variance of the coarse-grained defect is

〈{g[x, t]}2〉 = l3
∑

x

(
N−3

∑
n

g[yn, t]

)2

|ψ |2[x, t], (47)

which may be rearranged as

〈{g[x, t]}2〉 = l3N−6
∑
n,m

∑
x

g[yn[x], t]g[ym[x], t]|ψ |2[x, t], (48)

which in turn maps into

〈{g[x, t]}2〉 = l3N−6
∑
n,m

∑
x

g0[bn]g0[bm]|ψ |2[x, t], (49)

where again bn = P(yn[x], t; 0). The sampled initial defect g0[bn] is now assumed to be
‘white’ in space, in the sense that∑

x

g0[bn]g0[bm]|ψ |2[x, t] = δn,m

∑
x

g2
0[bn]|ψ |2[x, t]. (50)

The ‘white noise’ assumption is justified, provided the separation |yn−ym| = l/N of adjoining
subcell centroids at time t stretches to |bn −bm| > X at time 0, where X is the typical diameter
of the subdomains in which g0 is one-signed. The stretching factor is exp(�|t |), where again
� = |μ| + σ 2

λ Tλ ∼ E/h̄, so |t | must therefore exceed the relaxation time scale θN given by

θN = �−1 ln(NX/l). (51)

Combining (49) and (50) yields

〈{g[x, t]}2〉 = l3N−6
∑

x

|ψ |2[x, t]
∑

n

g2
0[bn], (52)

that is,

〈{g[x, t]}2〉 = l3N−3
∑

x

|ψ |2[x, t]
{
g2

0[P(x, t; 0)]
}
. (53)

Combining (28) and (53) with (24), where d3x is the cell volume l3, yields the estimate

〈{g[x, t]}2〉 ∼ N−3〈g2
0

〉
(54)

for the QM variance of the coarse-grained defect, valid when |t | > θN .
Once again, the preceding analysis establishes that at a sufficiently late time (�t � 1),

it is expected that the particles from different subcells of the same coarse-graining cell are
initially scattered at random throughout the domain D, and so the initial defects g0 for the
particles have either sign at random. The initial particle density and hence also the initial
defect are chosen freely of the de Broglie velocity and particle paths; thus, the initial values of
defect sampled by the particles are unbiased. The defect is conserved on particle paths, and
so the magnitude of the sample mean defect {g} is greatly reduced by the many cancellations.
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5. Remarks

5.1. Relaxation time scale

The stretching rate � is determined by Lagrangian moments of the principal Eulerian rates of
strain of the velocity field. For example σ 2

λ Tλ is the integral of the autocovariance σ 2
λ Cλ(t).

The latter is the Fourier transform of the frequency spectrum of the Lagrangian time series of
a principal rate of strain. The derivation of the relaxation time scale, from the characteristics
of the de Broglie velocity, is particularly pedantic. The principle is that more strain variance
implies a greater stretching rate � and hence a shorter relaxation time θN . Also, the separation
of the majority of subcell centroids at the coarse-graining time t is more like l than like l/N ;
hence, the relaxation time scale is more like θ1 = �−1 ln(X/l).

5.2. H-functional

Valentini and Westman [8] define an H-functional by

H [g] = 〈(1 + g) ln(1 + g)〉 =
∫

D

ρ ln(ρ/|ψ |2) d3x. (55)

The value of H [g] is a constant of the system: H [g] = H [g0]. The value of H [{g}] is not a
constant, and H [{g}] ≈ 〈{g}2〉 for {g} ≈ 0. Thus, H [{g}] ∼ N−3

〈
g2

0

〉
as the percentage of the

subcell centroids that are separated by X increases in time. The decay rate therefore is related to
the cumulative log-normal distribution, but the inferred rate is only vaguely consistent with the
approximately exponential decay of H [{g}] found numerically by Valentini and Westman [8].
On the other hand, the separation cannot exceed the domain diameter and so the applicability
of the log-normal distribution is restricted.

5.3. White initial defect

The assumption (50) of a white initial density defect g0 = ρ0/|ψ0|2 − 1 might seem
unreasonable. The pair of particles at bn and bm at time 0 are both, at time t, in the
cell with centroid x. The particles move according to the field of de Broglie velocity v,
which is dynamically related to the Born density |ψ |2 through the Born identity (4)–(6).
The Born density defines the measure in (50). One the other hand, the position at time 0,
of a particle labeled at time t, is the integral of the increasingly (t → ∞) chaotic and
effectively random velocities (10) along the particle path. The particle position at time 0 is
therefore asymptotically normally distributed, but more importantly here it is asymptotically
independent of the velocities along the path [24, 29]. Also, the case of interest here is that of
an initial density ρ0, and hence initial defect g0, prescribed freely of the amplitude and phase
of the wavefunction ψ . Particle separation assures that the sampled initial defects g0[bn]
and g0[bm] can have different signs. It follows from the independence of the sampled initial
defects that they are not correlated over the different cells (summation over x).

Future computations following [8] and [21] should collect sample statistics, but the
relaxation demonstrated in [8, 21] is strong evidence for the separation of particles, and also
for the unbiasedness and whiteness of the initial defects sampled by the particles.

5.4. Choices of measure

The moments of separation are obtained from those of the symmetric part of the rate-of-strain
tensor for the de Broglie velocity. The rate-of-strain tensor is not a Hermitian operator, being
state dependent, so there is no QM precedent for the choice of measure. The measure d3x
chosen here is uniform in space, in the Eulerian picture. In the Lagrangian picture, the measure
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involves the Jacobian: d3x = J (a, 0; t)d3a. The mean divergence vanishes (
∫ ∇ · vd3x = 0)

and hence the analysis of separation is conclusive. While the moments of separation are
based on the uniform measure derived from the phase of the wavefunction ψ , those of defect
are based on the standard QM measure (|ψ |2[x, t]d3x = |ψ0|2[a]d3a) derived from the wave
amplitude. The defect is not Hermitian either, and another candidate measure would be the
dBB measure (ρ[x, t]d3x = ρ0[a]d3a). The mean defect vanishes and the variance of the fine-
grained defect is conserved in the QM measure and also, if the defect were defined instead
by g = (f − 1)/f , in the dBB measure. However the dBB measure is inappropriate since
the particle density ρ is the ‘hidden variable’ under investigation here. On the other hand, the
QM measure is of utility simply because the Born density constrains the de Broglie velocity
through the Born identity (4). The Born density retains no conceptual role in de Broglie–Bohm
mechanics.

5.5. Relative dispersion regimes

The moments of separation or relative dispersion at time 0 from a finite separation l/N at
time t, or vice-versa, are assumed to be the same as those from an infinitesimal separation dxi .
By analogy with isotropic and stationary turbulence, the moments are indeed the same if the
squared magnitude of the spatial Fourier transform of the de Broglie velocity field, integrated
over a spherical shell of a constant wave number magnitude k, is of the form k−α where α > 3
(see, e.g., [19]). It may assumed that this infrared catastrophe is cut off at 1/L, where L is the
domain width. In the case α > 3, the separation at time r for 0 � r � |t | owes to ‘eddies’
in the de Broglie velocity field with a length scale k−1 much larger than the instantaneous
separation �P(r) ≡ |P(yn, t; r) − P(ym, t; r)|. If α < 1, then separation owes instead to
the smallest scales of motion, and the particles take independent random walks. Separation
variance grows like O(|t |/Tv) as time runs forward or backward, where Tv is the decorrelation
time for the velocity following a particle. This latter case (α < 1) is very similar in essence
to the diffusive model for relaxation proposed by Bohm and Hiley [1], and to the subquantum
mechanics of Nelson [31]. There is a third case (1 < α < 3) of great interest for a viscous
fluid, in which the turbulent kinetic energy is transferred from low to high wave numbers at
a constant rate ε. The transfer owes to the nonlinear advective acceleration, which has the
Eulerian representation v · ∇v in configuration space. The kinetic energy, injected at low
wave numbers at the rate ε by mechanical agitation, is dissipated at the same rate by viscous
stresses at high wave numbers. In the intervening ‘energy inertial range’, the separation
�P(r) is controlled by eddies of wave number k ∼ 1/�P(r). The separation variance grows
as ε|t |3 (see, e.g., [19]). The first observations of this range were made by Richardson [30],
who tracked small balloons in the atmosphere. The ‘self-similar’ energy-cascading dynamics
within the range are not relevant to the de Broglie velocity, unless the external and quantum
potentials (see, e.g., [11]) can act as source and sink, respectively, in the wave number space
representation of the quantum Hamilton–Jacobi equation.

In the two-dimensional domain considered by Valentini and Westman [8], the
wavefunction ψ for the bounded mixed state includes only the first 16 modes; thus, the
highest wave number is 27/2π/L. This is not a description of the wave number spectrum of
the de Broglie velocity v = (h̄/mi)∇ ln(ψ/|ψ |), but the assumption of exponentially growing
relative dispersion owing to large-scale eddies is of the most interest here.

5.6. Stationarity and isotropy

The analysis of infinitesimal line stretching, as outlined in section 3, assumes that the stretching
rate is unaffected by local diagonalization of the symmetrized rate-of-strain tensor at any point
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on a particle path. Both the symmetrization and the diagonalization involve local rotations of
coordinate axes. This implicitly requires statistical isotropy and stationarity of the Lagrangian
velocity field.

The analysis of the stretching of finite line segments, as mentioned in the preceding
subsection, involves an exact expression for the time rate of change of separation variance
conditioned by instantaneous separation (the ‘relative diffusivity’) in terms of a Bessel
transform of the nondirectional wave number spectrum of velocity. The validity of the exact
expression depends upon the isotropy of the covariance tensor for the difference between the
velocities at two points. Again, the expression may be simplified if the nondirectional wave
number spectrum of velocity is steeper than k−3. When the simplified relative diffusivity is
combined with the Richardson–Kraichnan or master equation for separation, the distribution
of separations is found to be the same log-normal distribution inferred in section 3. The
derivation of the master equation also assumes that velocity differences decorrelate in time.
The details may be found in [19]. The analysis of infinitesimal and finite separation presented
here is not innovative and is well established in the theory of turbulence [32, 33].

Stationarity of the rate-of-strain statistics is assumed for simplicity. Subject to the classical
Lindeberg condition, the central limit theorem holds also in the nonstationary case, that is, for
sums of random variables from different populations [24, 29]. Provided that the moments of
separation increase in time, and the initial defect is sampled without bias, the coarse-grained
defect will vanish. That is, relaxation will occur. Similarly, isotropy is assumed for simplicity.
Provided that there is a positive-definite relative diffusivity tensor, separation is statistically
inevitable. Separation is eventually bounded by the domain, at which time local isotropy is
certainly lost. By then, however, it is assured that the coarse-graining particles are randomly
sampling different regions where the defects have different signs.

6. Loss of reversibility

Detailed information about initial positions of particles is destroyed by coarse graining at later
times. The information is irrecoverable; thus the relaxation of coarse-grained particle densities
is irreversible. The process of destruction may be analyzed as follows.

Consider a de Broglie velocity field v and a smooth initial particle density ρ0. It will
be convenient to refer to a flight time r, where 0 � r � t . The density ρ0 at time r = 0
is advected by v, through the Eulerian prescription (12) or equivalently via the Lagrangian
prescription (20), to the fine-grained particle density ρ at r = t > 0. Consider a subsequent
reversal of time. Let ρR denote the ‘reversed’ density recovered at r = 0 from ρ at r = t .
Particles are returned to their original positions; hence, ρR = ρ0. Consider next the density
{ρ}R recovered at r = 0 from {ρ}. The former is finely grained, even though the latter is the
density at r = t after coarse graining. Coarse graining again, now at r = 0, yields the smooth
field {{ρ}R} which is close to the equilibrium {|ψ0|2}, but which is not necessarily close to {ρ0}.
The resolution of this paradox is that particles in a small cell for the second coarse graining (at
r = 0) are widely separated at r = t , and particles in a small cell for the first coarse graining
(at r = t) are widely separated at r = 0. Thus, {{ρ}R} is obtained from ρ0 by two intervals
of stirring. Again, as shown in section 3, the moments of separation grow exponentially as
time advances backward or forward; hence, the reversed evolution from r = t to r = 0 is
statistically indistinguishable from a forward evolution from r = t to r = 2t . Coarse graining
and the statistical stretching of line elements regardless of the direction of time make quantum
thermal equilibrium irreversible.

The statistical symmetry of stretching is most simply illustrated by considering the
expectation of exp(at), where t is time in the interval −∞ < t < ∞ and the constant a
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is a normal random variable with zero mean and unit variance. The expectation is readily
shown to be exp(t2/2). When the random exponent at is replaced with the time integral of a
stationary random process, the expectation of the exponential is given by (38). Exponential
growth is assured here for |t | → ∞, as explained following (38). There is a straightforward
extension of (38) to nonstationary processes.

Valentini and Westman [8] caution that if the particle density prescribed at time r = 0
were identical to the above-mentioned fine-grained density ρ at time r = t , the density would
be advected by the de Broglie velocity field −v to the original smooth density ρ0 at time t. The
density ρ0 may be far from QTE, even after coarse graining. Such a prescription of density at
r = 0 is of course intricately related to subsequent values of the velocity. Yet, the exceptional
can happen. Quoting from [8], ‘Conceptually, the situation here is the same as in ordinary
statistical mechanics’.

The coarse graining in the numerical computations reported in [8] is an arithmetical
operation tuned to the computed chaos. The question arises: what is the nature of coarse
graining in the real world? Valentini and Westman [8] argue that it is the ‘violent’ action
of magnetic fields, etc, on the quantum system throughout the astrophysical lifetime of the
system. That is, any real measurement will coarse grain the near-infinitesimal fine grain now
present in the particle densities.

The de Broglie flow conserves the QM measure, as expressed in (24). This ‘equivariance’
[2] imposes on the particle motions the consequences of the Poincaré recurrence theorem
[3, 21]. Each particle must eventually return arbitrarily closely to its initial position. The
initial value of the defect g is conserved following the motion of the particle, and so is close to
the initial value at the point of close return. By extension, all the particles in a coarse-graining
cell must have been in that same cell at some time in the distant past. Stirring is ineffective in
the long run, and QTE must eventually be lost. The conclusion is formally denied here since
the spatial averaging substitutes for ensemble averaging, that is, particle separation is probably
inevitable. In reality, no quantum system is isolated and thus the Poincaré recurrence time is
that of the universe.

7. Counterexamples

There are several familiar quantum systems in which an arbitrary initial particle density does
not relax to QTE. These systems will be described in outline.

7.1. Plane waves and wave packets

A plane wave solution of the Schrödinger equation (1) has a phase which is a linear function
of position. The de Broglie velocity is therefore uniform in space, and so merely translates
an initial particle density. More interesting is the well-known Gaussian wave packet solution
(see, e.g., [11]). Given an initial wave number vector k, the center of the packet has the
velocity u = h̄k/m, and for large time the packet width grows essentially linearly in time in
all directions. Relative to an observer moving with the center of the packet, the de Broglie
velocity is uniformly divergent in all directions and so merely expels particles radially outward
from the packet. Neither of these systems would stir an arbitrary initial particle density to QTE.
Yet these solutions are incomplete as descriptions of the history of isolated quantum systems,
which are all created by physical processes involving other forms of matter. The wavefunction
for the component of the system that emits the plane wave, or the wave packet, should also be
considered. That other part of the wavefunction may separate from the plane wave, or the wave
packet, and itself return to a stationary bound state. However, during the emission process, or
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‘adjustment’ in the terminology of geophysical fluid dynamics, the combined wavefunction
would be transient and so would have an intricate field of phase [2]. The adjusting field of
de Broglie velocity would be far from simple and would be capable of stirring the particle
density to QTE. The initial particle density should thus be taken as that at the onset of the
establishment of the isolated packet, for example, and not some virtual perturbation from the
QTE which is well established by the time the packet has become isolated.

As a proxy for the other matter in the creation of the isolated Gaussian packet, consider a
second and identical particle. The configuration space is R

6. Either particle may be in Alice’s
lab or in Bob’s; hence, the spatial factor in the wavefunction is the symmetric sum of products
of pairs of single-particle packets [11]. That is, the wavefunction is a pair of packets in R

6

separating along a line in R
6. It is readily shown that the interference region between the two

centers expands linearly in time, for large time, and that the region extends off the line of
separation. Thus a joint particle density between the packets is always being stirred.

The intuitively obvious distinction between a laminar or non-stirring field of de Broglie
velocity, and a turbulent field that can stir, may be quantified as follows. The Gaussian
wave packet for a free particle is an integral over the continuum of energy eigenstates, which
would seem to imply that the de Broglie velocity is turbulent. However, the complex spectral
coefficients are in precise relationship to one another, that is, the spectrum is coherent. The
coefficients in the sums of eigenstates chosen by [8] and [21], on the other hand, are pseudo-
random complex numbers. That is, their spectra are incoherent. Similarly, a regular train of
cuspoidal water waves can have the same power spectrum as a random wave field, but the
bispectra are different. In terms of the assumptions made here, the cuspoidal wave train is
anisotropic and the Lagrangian time series of particle velocity do not decorrelate.

7.2. Stationary bound states

Colijn and Vrcsay [12] derive the de Broglie velocity for the electron of the hydrogen atom,
in the singlet state with a constant spin factor. They find non-rigid axisymmetric flow around
the direction of the spin eigenstate. This ‘laminar’ flow does not stir radially, nor azimuthally.
On the other hand during the formation of the hydrogen atom, which quite likely took place
in the early universe, the electron capture by the proton would entail the emission of a photon.
The process is described not by quantum mechanics but by quantum electrodynamics (QED).
It must be conceded that the extension of the dBB concepts to quantum field theory is not very
far advanced, and there is certainly no clear picture of density stirring during a QED process.
Scattering, nevertheless, serves as a proxy for capture. The spatial variations in the phases
of scattering eigenfunctions (see, e.g., [34, 35]) are so intricate that the de Broglie velocities
have an efficient stirring action.

7.3. Localized initial densities

If the initial particle density were highly localized, then the particles would take a long time
to disperse throughout the domain of the mixed bound state considered in section 3. Quantum
thermal equilibrium might not obtain until there have been many oscillations of the quantum
system. Yet again the case is artificial. The particles are emitted from the source for the
wavefunction that eventually adjusts to the bound state. Thus, there is in reality no disparity
in the spatial extents of the particle density and the stirring field during adjustment.

The comments in this section are by no means proofs that {ρ} relaxes to |ψ |2 during
adjustment, but they indicate the incompleteness of simple ‘counterexamples’.
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8. Discussion

The kinematics in sections 2 and 3 do not depend upon the dimensionality of x, so relaxation
also results from stirring by the de Broglie velocity associated with a Schrödinger wavefunction
on the multi-particle configuration space (x1, x2, . . .). It is straightforward to extend the
analysis to the single-particle Dirac equation for relativistic fermions with spin-1/2 [11], and
to the single-particle Kemmer–Duffin–Petiau equation for relativistic bosons with spin-0 or
spin-1 [36]. In each case, the quantum thermal equilibrium in the laboratory frame is ψ †ψγ ,
where ψ †ψ is defined and normalized in the rest frame of the particle, γ = 1/

√
1 − |v|2/c2 is

the Lorentz factor and v is the particle velocity. The factor allows for the Lorentz contraction
of a volume element containing particles, in the direction of the motion of the particles [37].
A Lagrangian analysis of the de Broglie–Bohm mechanics of a quantum field would require
that our understanding of relative dispersion in configuration space be extended to function
space.

It has been argued [15] that early variations from QTE explain the cosmic horizon problem,
and that the variations ought to be evident in the cosmic microwave background. The Planck
Mission3 is collecting new CMB data. Direct observation of relaxation to QTE in the laboratory
would require resolving the relaxation time scale, which is about an atomic oscillation or about
1 fs. For a double-slit interference pattern to be non-Born, the times of flight would also have
to be about 1 fs or less. The flight paths would have to be about 1/Rydberg.
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